Climate services promise better decisions but mainly focus on better data

  • 1.

    Hewitt, C., Mason, S. & Walland, D. The global framework for climate services. Nat. Clim. Change 2, 831–832 (2012).

    Article 

    Google Scholar
     

  • 2.

    Brasseur, G. P. & Gallardo, L. Climate services: lessons learned and future prospects. Earth’s Future 4, 79–89 (2016).

    Article 

    Google Scholar
     

  • 3.

    Lemos, M. C., Kirchhoff, C. J. & Ramprasad, V. Narrowing the climate information usability gap. Nat. Clim. Change 2, 789–794 (2012).

    Article 

    Google Scholar
     

  • 4.

    Prokopy, L. S. et al. Useful to usable: developing usable climate science for agriculture. Clim. Risk Manag. 15, 1–7 (2017).

    Article 

    Google Scholar
     

  • 5.

    Wall, T. U., Meadow, A. M. & Horganic, A. Developing evaluation indicators to improve the process of coproducing usable climate science. Weather Clim. Soc. 9, 95–107 (2017).

    Article 

    Google Scholar
     

  • 6.

    Dilling, L. & Lemos, M. C. Creating usable science: opportunities and constraints for climate knowledge use and their implications for science policy. Glob. Environ. Change 21, 680–689 (2011).

    Article 

    Google Scholar
     

  • 7.

    Tang, S. & Dessai, S. Usable science? The U.K. Climate Projections 2009 and decision support for adaptation planning. Weather Clim. Soc. 4, 300–313 (2012).

    Article 

    Google Scholar
     

  • 8.

    McNie, E. C. Delivering climate services: organizational strategies and approaches for producing useful climate-science information. Weather Clim. Soc. 5, 14–26 (2013).

    Article 

    Google Scholar
     

  • 9.

    Bruno Soares, M., Daly, M. & Dessai, S. Assessing the value of seasonal climate forecasts for decision-making. Wiley Interdiscp. Rev. Clim. Change 9, e523 (2018).


    Google Scholar
     

  • 10.

    Nissan, H. et al. On the use and misuse of climate change projections in international development. Wiley Interdiscp. Rev. Clim. Change 10, e579 (2019).

    Article 

    Google Scholar
     

  • 11.

    Dutton, J. A. Opportunities and priorities in a new era for weather and climate services. Bull. Am. Meteor. Soc. 83, 1303–1312 (2002).

    Article 

    Google Scholar
     

  • 12.

    Miles, E. L. et al. An approach to designing a national climate service. Proc. Natl Acad. Sci. USA 103, 19616–19623 (2006).

    CAS 
    Article 

    Google Scholar
     

  • 13.

    Hansen, J. W., Zebiak, S. & Coffey, K. Shaping global agendas on climate risk management and climate services: an IRI perspective. Earth Perspect. 1, 13 (2014).

    Article 

    Google Scholar
     

  • 14.

    Hewitt, C. D., Stone, R. C. & Tait, A. B. Improving the use of climate information in decision-making. Nat. Clim. Change 7, 614–616 (2017).

    Article 

    Google Scholar
     

  • 15.

    Hewitt, C. D. et al. Making society climate resilient: international progress under the global framework for climate services. Bull. Am. Meteor. Soc. 101, E237–E252 (2020).

    Article 

    Google Scholar
     

  • 16.

    Lourenço, T. C., Swart, R., Goosen, H. & Street, R. The rise of demand-driven climate services. Nat. Clim. Change 6, 13–14 (2016).

    Article 

    Google Scholar
     

  • 17.

    Vaughan, C. & Dessai, S. Climate services for society: origins, institutional arrangements, and design elements for an evaluation framework. Wiley Interdiscp. Rev. Clim. Change 5, 587–603 (2014).

    Article 

    Google Scholar
     

  • 18.

    Weichselgartner, J. & Arheimer, B. Evolving climate services into knowledge–action systems. Weather Clim. Soc. 11, 385–399 (2019).

    Article 

    Google Scholar
     

  • 19.

    Bruno Soares, M. & Buontempo, C. Challenges to the sustainability of climate services in Europe. Wiley Interdiscp. Rev. Clim. Change 10, 190 (2019).


    Google Scholar
     

  • 20.

    Daniels, E., Bharwani, S., Swartling, Å. G., Vulturius, G. & Brandon, K. Refocusing the climate services lens: introducing a framework for co-designing ‘transdisciplinary knowledge integration processes’ to build climate resilience. Clim. Serv. 19, 100181 (2020).

    Article 

    Google Scholar
     

  • 21.

    Harjanne, A. Servitizing climate science—institutional analysis of climate services discourse and its implications. Glob. Environ. Change 46, 1–16 (2017).

    Article 

    Google Scholar
     

  • 22.

    Kalafatis, S. E., Whyte, K. P., Libarkin, J. C. & Caldwell, C. Ensuring climate services serve society: examining tribes’ collaborations with climate scientists using a capability approach. Clim. Change 157, 115–131 (2019).

    Article 

    Google Scholar
     

  • 23.

    Vogel, C., Steynor, A. & Manyuchi, A. Climate services in Africa: re-imagining an inclusive, robust and sustainable service. Clim. Serv. 15, 100107 (2019).

    Article 

    Google Scholar
     

  • 24.

    Vincent, K., Daly, M., Scannell, C. & Leathes, B. What can climate services learn from theory and practice of co-production? Clim. Serv. 12, 48–58 (2018).

    Article 

    Google Scholar
     

  • 25.

    Vaughan, C., Dessai, S. & Hewitt, C. Surveying climate services: what can we learn from a bird’s-eye view? Weather Clim. Soc. 10, 373–395 (2018).

    Article 

    Google Scholar
     

  • 26.

    Dinku, T. The need for national centres for climate and development in Africa. Clim. Dev. 2, 9–13 (2010).

    Article 

    Google Scholar
     

  • 27.

    Webber, S. Circulating climate services: commercializing science for climate change adaptation in Pacific Islands. Geoforum 85, 82–91 (2017).

    Article 

    Google Scholar
     

  • 28.

    Pulwarty, R. S., Simpson, C. & Nierenberg, C. in Integrated Regional Assessment of Global Climate Change (eds Knight, C. G. & Jäger, J.) 367–393 (Cambridge Univ. Press, 2009).

  • 29.

    Meadow, A. M. et al. Moving toward the deliberate coproduction of climate science knowledge. Weather Clim. Soc. 7, 179–191 (2015).

    Article 

    Google Scholar
     

  • 30.

    Fisher, S., Dodman, D., Van Epp, M. & Garside, B. The usability of climate information in sub-national planning in India, Kenya and Uganda: the role of social learning and intermediary organisations. Clim. Change 151, 219–245 (2018).

    Article 

    Google Scholar
     

  • 31.

    Daly, M. & Dilling, L. The politics of ‘usable’ knowledge: examining the development of climate services in Tanzania. Clim. Change 157, 61–80 (2019).

    Article 

    Google Scholar
     

  • 32.

    Carr, E. R., Goble, R., Rosko, H. M., Vaughan, C. & Hansen, J. Identifying climate information services users and their needs in Sub-Saharan Africa: a review and learning agenda. Clim. Dev. 12, 23–41 (2020).

    Article 

    Google Scholar
     

  • 33.

    Porter, J. J. & Dessai, S. Mini-me: why do climate scientists’ misunderstand users and their needs? Environ. Sci. Policy 77, 9–14 (2017).

    Article 

    Google Scholar
     

  • 34.

    Daly, M. & Dessai, S. Examining the goals of the regional climate outlook forums: what role for user engagement? Weather Clim. Soc. 10, 693–708 (2018).

    Article 

    Google Scholar
     

  • 35.

    Lemos, M. C., Finan, T. J., Fox, R. W., Nelson, D. R. & Tucker, J. The use of seasonal climate forecasting in policymaking: lessons from Northeast Brazil. Clim. Change 55, 479–507 (2002).

    Article 

    Google Scholar
     

  • 36.

    Findlater, K. M., Donner, S. D., Satterfield, T. & Kandlikar, M. Integration anxiety: the cognitive isolation of climate change. Glob. Environ. Change 50, 178–189 (2018).

    Article 

    Google Scholar
     

  • 37.

    Findlater, K. M., Satterfield, T., Kandlikar, M. & Donner, S. D. Six languages for a risky climate: how farmers react to weather and climate change. Clim. Change 148, 451–465 (2018).

    Article 

    Google Scholar
     

  • 38.

    Findlater, K. M., Satterfield, T. & Kandlikar, M. Farmers’ risk-based decision making under pervasive uncertainty: cognitive thresholds and hazy hedging. Risk Anal. 39, 1755–1770 (2019).

    Article 

    Google Scholar
     

  • 39.

    Findlater, K. M., Kandlikar, M., Satterfield, T. & Donner, S. D. Weather and climate variability may be poor proxies for climate change in farmer risk perceptions. Weather Clim. Soc. 11, 697–711 (2019).

    Article 

    Google Scholar
     

  • 40.

    Gerlak, A. K. et al. Building a framework for process-oriented evaluation of regional climate outlook forums. Weather Clim. Soc. 10, 225–239 (2018).

    Article 

    Google Scholar
     

  • 41.

    Gerlak, A. K. et al. The gnat and the bull: do climate outlook forums make a difference? Bull. Am. Meteor. Soc. 101, E771–E784 (2020).

    Article 

    Google Scholar
     

  • 42.

    Vaughan, C., Muth, M. F. & Brown, D. P. Evaluation of regional climate services: learning from seasonal-scale examples across the Americas. Clim. Serv. 15, 100104 (2019).

    Article 

    Google Scholar
     

  • 43.

    Perrels, A. Quantifying the uptake of climate services at micro and macro level. Clim. Serv. 17, 100152 (2020).

    Article 

    Google Scholar
     

  • 44.

    Lemos, M. C. & Morehouse, B. J. The co-production of science and policy in integrated climate assessments. Glob. Environ. Change 15, 57–68 (2005).

    Article 

    Google Scholar
     

  • 45.

    Bessembinder, J. et al. Need for a common typology of climate services. Clim. Serv. 16, 100135 (2019).

    Article 

    Google Scholar
     

  • 46.

    Lahsen, M. & Turnhout, E. How norms, needs, and power in science obstruct transformations towards sustainability. Environ. Res. Lett. 16, 025008 (2021).

    Article 

    Google Scholar
     

  • 47.

    O’Brien, K. Global environmental change II: from adaptation to deliberate transformation. Prog. Hum. Geogr. 36, 667–676 (2012).

    Article 

    Google Scholar
     

  • 48.

    O’Brien, K. Global environmental change III: closing the gap between knowledge and action. Prog. Hum. Geogr. 37, 587–596 (2012).

    Article 

    Google Scholar
     

  • 49.

    Shove, E. Beyond the ABC: climate change policy and theories of social change. Environ. Plan A 42, 1273–1285 (2010).

    Article 

    Google Scholar
     

  • 50.

    Klenk, N. & Meehan, K. Climate change and transdisciplinary science: problematizing the integration imperative. Environ. Sci. Policy 54, 160–167 (2015).

    Article 

    Google Scholar
     

  • 51.

    Atkinson, R. & Flint, J. in The SAGE Encyclopedia of Social Science Research Methods (eds Lewis-Beck, M. et al.) 1043–1044 (Sage Publications, 2004).

  • 52.

    Larosa, F. & Mysiak, J. Mapping the landscape of climate services. Environ. Res. Lett. 14, 093006 (2019).

    Article 

    Google Scholar